Colorado Center for Astrodynamics Research (CCAR) /aerospace/ en Silicon Flatirons to Host Inaugural Space and Spectrum Policy Conference /aerospace/2025/06/17/silicon-flatirons-host-inaugural-space-and-spectrum-policy-conference <span>Silicon Flatirons to Host Inaugural Space and Spectrum Policy Conference </span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2025-06-17T14:48:00-06:00" title="Tuesday, June 17, 2025 - 14:48">Tue, 06/17/2025 - 14:48</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2025-06/Law-20Points-20Banners-20-May-19_png.jpg?h=ff8c3fa3&amp;itok=TmtvKA4K" width="1200" height="800" alt="Rendering of Earth with orbiting satellites."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/423" hreflang="en">Keith Gremban News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div><p lang="EN-US"><span lang="EN-US">In theory, space is infinite. In practice, it is not.</span></p></div><div><p lang="EN-US"><span lang="EN-US">Practical and physical limitations of the space environment are now evident as stakeholders wish to use resources in space. As barriers to entry in space continue to fall, and resource conflicts emerge, this begs the question: what is the correct way to regulate space?</span></p><div><div><div>&nbsp;</div></div></div></div><div><p lang="EN-US"><span lang="EN-US">On June 24 and 25, Silicon Flatirons will aim to examine this urgent question at the inaugural S</span><a href="https://siliconflatirons.org/events/challenges-in-sustaining-space-as-a-resource-2025-06-24/" rel="nofollow"><span lang="EN-US">pace and Spectrum Policy Conference</span></a><span lang="EN-US"> hosted at Colorado Law. The event, titled “Challenges in Sustaining Space as a Resource,” will highlight the challenges of space sustainment, and explore technical, regulatory, and cultural issues that must be addressed.</span></p></div><div><p><span lang="EN-US">“The increasing exploitation of space is obvious to even the casual observer,” said </span><a href="/aerospace/keith-gremban" rel="nofollow"><span lang="EN-US">Keith Gremban,</span></a><span lang="EN-US"> Senior Fellow at Silicon Flatirons and Research Professor&nbsp;at the University of Colorado Boulder’s Colorado Center for Astrodynamics Research (CCAR). “Any area that is growing so quickly is bound to stretch the borders of existing technology, regulations, and policy. Space also has the property of being international, which opens up an additional range of regulatory and policy concerns.”</span> &nbsp;</p></div><div><p lang="EN-US"><span lang="EN-US">"This conference examines urgent issues as commercial space activity quickly outruns existing space regulations,” said Brad Bernthal, Executive Director of Silicon Flatirons. “This is what Silicon Flatirons does best. We convene top experts, and different opinions, to tackle tough questions in technology policy.”</span></p></div><div><p lang="EN-US"><span lang="EN-US">Conference topics will range from addressing the challenges of maintaining orbital space as a resource to issues like managing radio frequencies to keep satellite communications from interfering with each other or with terrestrial communications. Sessions include “Historical Lessons for Governing the Final Frontier,” “Contemporary Challenges in Space Governance,” and “Resolving Spectrum Conflicts Between Active Users in Space and on Earth.”</span></p></div><div><p lang="EN-US"><span lang="EN-US">“Exploitation of space can be a huge benefit for the U.S. and the entire world if managed appropriately,” Gremban explained. “However, as with any other natural resource, inappropriate actions can have drastic consequences for everyone. It’s time to draw attention to the challenges of regulating space in order to maintain it as a global resource. As we know, regulation can stifle or encourage innovation.”&nbsp;</span> &nbsp;</p></div><div><p lang="EN-US"><span lang="EN-US">Colorado Law serves as a superb launch point for the&nbsp;conference. The state itself is a hub for the space industry and is already home to a number of existing and startup space companies such as Lockheed Martin and Raytheon, as well as newcomers Kayhan Space and Capella Space. Additionally, CU houses one of the largest </span><a href="/aerospace/" rel="nofollow"><span lang="EN-US">aerospace engineering departments</span></a><span lang="EN-US"> in the U.S. along with&nbsp;the </span><a href="https://lasp.colorado.edu/" rel="nofollow"><span lang="EN-US">Laboratory for Atmospheric and Space Physics (LASP)</span></a><span lang="EN-US">, one of the premier academic institutes exploring space.&nbsp;</span> &nbsp;</p></div><div><p lang="EN-US"><span lang="EN-US">Keynote speakers include Anna Gomez, FCC Commissioner; David Goldman, Vice President of Satellite Policy at SpaceX; and Adam Cassady, Principal Deputy Assistant Secretary and Deputy Administrator at the National Telecommunications and Information Administration (NTIA). In addition to the three keynote addresses, participants will hear from more than 25 different speakers across seven sessions. The results of the conference discussions will be documented in a report.</span></p></div><div><p><span lang="EN-US">“A particularly interesting discussion will be on so-called “dark and quiet skies,” meaning keeping the skies clear for radio and optical astronomy, for amateur star-gazing, and to preserve the legends, myths, and religions that reside in the visible stars,” Gremban said. “There are a number of designated dark sky locations around the world, but that won’t matter if brightly reflecting satellites obscure the constellations.”</span></p></div><div><p lang="EN-US"><span lang="EN-US">Registration for the conference is now open, and a remote option will be available. Additionally, CLE credits for Colorado attorneys are pending. Visit the </span><a href="https://siliconflatirons.org/events/challenges-in-sustaining-space-as-a-resource-2025-06-24/" rel="nofollow"><span lang="EN-US">Silicon Flatirons website</span></a><span lang="EN-US"> for more details.&nbsp;</span></p></div></div> </div> </div> </div> </div> <script> window.location.href = `/law/2025/06/16/silicon-flatirons-host-inaugural-space-and-spectrum-policy-conference`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 17 Jun 2025 20:48:00 +0000 Jeff Zehnder 6016 at /aerospace Scheeres honored by International Astonautical Federation /aerospace/2025/04/08/scheeres-honored-international-astonautical-federation <span>Scheeres honored by International Astonautical Federation</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2025-04-08T14:58:18-06:00" title="Tuesday, April 8, 2025 - 14:58">Tue, 04/08/2025 - 14:58</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-image/52347495_2217218725261759_8575618649958645760_n.jpg?h=d3e2533a&amp;itok=TRDbWHhC" width="1200" height="800" alt="Dan Scheeres"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/243" hreflang="en">Daniel Scheeres News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-small_500px_25_display_size_"> <div class="imageMediaStyle small_500px_25_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/small_500px_25_display_size_/public/people/smead_scheeres_lr.jpg?itok=ETyox0fU" width="375" height="533" alt> </div> </div> <p><a href="/aerospace/daniel-scheeres" data-entity-type="node" data-entity-uuid="80afa833-c7b9-4193-bfbd-1c433d3bd0ca" data-entity-substitution="canonical" rel="nofollow" title="Daniel Scheeres">Dan Scheeres</a> is being recognized with a 2025 International Astronautical Federation Distinguished Service Award.</p><p>Scheeres, a distinguished professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences, is an expert in the mechanics of natural bodies, spacecraft, and debris within space environments.</p><p>The IAF is a leading space advocacy body with members worldwide. They are honoring Scheeres for outstanding contributions to the astrodynamics community.</p><p>Scheeres’ research spans the topics of astrodynamics and spacecraft navigation to planetary science and celestial mechanics and has published extensively in these fields.&nbsp;</p><p>One primary focus of Scheeres’ research is studying the mechanics of small bodies (such as moons and asteroids) with applications to planetary and asteroid missions. A separate focus of Scheeres’ research is in the field of Space Situational Awareness, where his lab studies the dynamics and estimation of orbital debris and active satellites.&nbsp;</p><p>Most recently, Scheeres is serving as the Radio Science Lead and Co-Investigator for NASA’s OSIRIS REx Asteroid Sample Return Mission.</p><p class="lead"><a href="https://www.iafastro.org/news/iaf-distinguished-service-award-2025.html" rel="nofollow">Find out more at the IAF website...</a></p></div> </div> </div> </div> </div> <div>Dan Scheeres is being recognized with a 2025 International Astronautical Federation Distinguished Service Award. Scheeres, a distinguished professor in the...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 08 Apr 2025 20:58:18 +0000 Jeff Zehnder 5975 at /aerospace Schaub elected to 2025 class of National Academy of Engineering /aerospace/2025/02/27/schaub-elected-2025-class-national-academy-engineering <span>Schaub elected to 2025 class of National Academy of Engineering</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2025-02-27T16:21:35-07:00" title="Thursday, February 27, 2025 - 16:21">Thu, 02/27/2025 - 16:21</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2025-02/Aerospace_Faculty_Portraits_PC0049.JPG.JPG?h=24bb3428&amp;itok=VSO3F2rC" width="1200" height="800" alt="Hanspeter Schaub"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/221" hreflang="en">Hanspeter Schaub News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div><div><div><div><div><div><div><p>Two Ҵýƽ faculty members, a former faculty member and a distinguished alumnus are among 128 new members elected to the National Academy of Engineering for 2025.&nbsp;</p><p>According to NAE, "<span>election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions in at least one of the following categories: 'engineering practice, research, or education,' 'pioneering of new and developing fields of technology, major advancements in traditional fields of engineering, or development/implementation of innovative approaches to engineering education' or 'engineering leadership of one or more major endeavors.'"</span></p><p><span>The four will be formally inducted during the NAE's Annual Meeting in October.&nbsp;</span></p></div></div></div></div></div><h2>Hanspeter Schaub</h2><p><strong>For contributions to the control of satellite formations and relative orientations utilizing natural forces, including the use of electrostatics</strong></p><p>A distinguished professor and chair of the Ann and H.J. Smead Department of Aerospace Engineering Sciences at Ҵýƽ, <a href="/aerospace/hanspeter-schaub" rel="nofollow">Hanspeter Schaub</a> has made pioneering research advances in spacecraft formation flying, space debris mitigation, attitude dynamics, autonomous spacecraft tasking and charged astrodynamics. His work has been instrumental in high-profile space projects, including the development of key components for the UAE Hope mission to Mars and the creation of the widely used <a href="https://avslab.github.io/basilisk" rel="nofollow">Basilisk software&nbsp;</a>for spacecraft mission simulation. He has been recognized multiple times for excellence in research and education, including the 2024 American Astronautical Society <a href="https://astronautical.org/awards/brouwer/" rel="nofollow">Dirk Brouwer Award</a> for transformational research. He is a Fellow of both AIAA and AAS. Schaub has been a member of the Ҵýƽ aerospace faculty since 2007 and holds a bachelor's, master's and PhD in aerospace engineering, all from Texas A&amp;M University.</p><p><em>Related reading:</em></p><ul><li><a href="/aerospace/2024/11/07/schaub-one-nine-new-cu-distinguished-professors" rel="nofollow">Schaub one of nine new CU Distinguished Professors</a></li><li><a href="/aerospace/2024/06/03/cu-boulder-industry-partner-space-docking-and-satellite-ai-research" rel="nofollow">Ҵýƽ, industry partner on space docking and satellite AI research</a></li></ul></div></div></div> </div> </div> </div> </div> <script> window.location.href = `/engineering/four-ties-cu-engineering-elected-2025-class-national-academy-engineers`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 27 Feb 2025 23:21:35 +0000 Jeff Zehnder 5924 at /aerospace CIRBE CubeSat finds new radiation belts after solar storm /aerospace/2025/02/10/cirbe-cubesat-finds-new-radiation-belts-after-solar-storm <span>CIRBE CubeSat finds new radiation belts after solar storm</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2025-02-10T09:44:51-07:00" title="Monday, February 10, 2025 - 09:44">Mon, 02/10/2025 - 09:44</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2024-09/Van_Allen_Belts1_jpg_webp.jpg?h=ddc58dd3&amp;itok=GOyO1Kav" width="1200" height="800" alt="An artist’s concept of the Van Allen belts with a cutaway section of the giant donuts of radiation that surround Earth."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/2024-09/Van_Allen_Belts1_jpg_webp.jpg?itok=R4XaeviQ" width="750" height="422" alt="An artist’s concept of the Van Allen belts with a cutaway section of the giant donuts of radiation that surround Earth."> </div> </div> <p>NASA is highlighting new research from the Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat.</p><p>Designed at built at Ҵýƽ and LASP, CIRBE is conducting sophisticated, fine-grain measurements of the Van Allen Belts.</p><p>Following the largest solar storm in two decades, scientists discovered that this storm also created two new temporary belts of energetic particles encircling Earth.</p><p>“When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author <a href="/aerospace/xinlin-li" data-entity-type="node" data-entity-uuid="a49b2ac4-3de2-4147-8f53-2de3a72b7855" data-entity-substitution="canonical" rel="nofollow" title="Xinlin Li">Xinlin Li,</a> a professor at&nbsp;the Laboratory for Atmospheric and Space Physics (LASP) and Smead Aerospace. “This is really stunning.”</p><p class="lead"><a href="https://science.nasa.gov/science-research/heliophysics/nasa-cubesat-finds-new-radiation-belts-after-may-2024-solar-storm/" rel="nofollow">Read the full article at NASA...</a></p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 10 Feb 2025 16:44:51 +0000 Jeff Zehnder 5903 at /aerospace Google Maps for space? One grad student is making it happen /aerospace/2024/12/03/google-maps-space-one-grad-student-making-it-happen <span>Google Maps for space? One grad student is making it happen</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-12-03T16:25:47-07:00" title="Tuesday, December 3, 2024 - 16:25">Tue, 12/03/2024 - 16:25</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2024-12/Turner_photo_jpg.jpg?h=681c29f3&amp;itok=YMLEMmom" width="1200" height="800" alt="Dezell Turner"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div><div><div><div><div><div><p>Dezell Turner slips on a set of sleek augmented reality goggles in the lobby of the Smead Aerospace Engineering Sciences Building. Behind him stretches a floor-to-ceiling mural of space—a deep blue sky dotted with constellations and the cloudy shape of the Milky Way.</p><p>In his Microsoft HoloLens headset, however, Turner is experiencing a different kind of outer space.</p><div><div>&nbsp;</div></div><p>Turner, a graduate student in <a href="/aerospace" rel="nofollow">aerospace engineering sciences</a>, waives his hands in front of him and pinches his fingers. Inside the headset, which only he can see, curving red and yellow lines appear. They join two dots, one representing Earth and the other the moon. With a few swipes, the lines shift, transforming from a relatively simple arc to more complicated curls and loop-de-loops.</p><p>It looks like a more dizzying version of directions you might follow on your phone during a road trip.</p><p>“This is like a holographic Google Maps for planning space missions,” he said.</p><p>The new tool, which Turner developed working under advisor Jay McMahon, projects various paths a spacecraft could take to get to the moon through what scientists call “cislunar” space. He named the software ASTROMECH, a nod to a class of droids in the Star Wars franchise.</p><p>Turner’s work arrives as the moon is having a moment. NASA’s <a href="https://www.nasa.gov/humans-in-space/artemis/" rel="nofollow">Artemis Program</a> plans to land humans on the lunar surface sometime this decade. Other entities, including a growing number of private companies, have their eyes set on space. Turner hopes that his AR tool will help some of those groups plan out their missions—picking routes and weighing factors like speed versus fuel cost.</p><p>For the budding aerospace engineer, the project is a chance to make the technology from some of his favorite movies a reality. Picture the scene in 2015’s Star Wars: The Force Awakens in which a droid projects a holographic map that will lead the characters to the location of a missing hero.</p><p>“When R2D2 projects the map to Luke Skywalker, we’re creating a real-world version of that that’s hopefully just as intuitive to use,” Turner said.</p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div>&nbsp;</div><p><span>Dezell Turner in the lobby of the Smead Aerospace Engineering Sciences Building. (Credit: Dezell Turner)</span></p><div>&nbsp;</div><p><span>According to ASTROMECH, this route from Earth to the moon would take a little over 15 days. The display also includes an estimate for delta-V, essentially how much fuel the spacecraft will need to burn. (Credit: Dezell Turner)</span></p></div></div><h2>Miniature planetarium</h2><p>Turner, who’s 24, has loved space for as long as he can remember. When he was 4 years old, his parents bought him a projector that displayed a star map on the ceiling of his bedroom. He spent so long staring at the projection that he memorized many of the constellations.</p><p>But space is a lot more complicated than movies or his bedroom planetarium might make it seem. In Star Wars, if Han Solo needs to get somewhere, he just points the Millennium Falcon in the right direction and goes. In reality, spacecraft leaving Earth’s orbit are caught in the push and pull between the planet and its moon.</p><p>“Your trajectories aren’t always going to be traditional shapes like ellipses and circles,” Turner said. “Spacecraft may take all sorts of weird paths, and that can become very mathematically complicated.”</p><p>In 1969, for example, Apollo 11 took a relatively direct route to the moon, arriving in an orbit close to the lunar surface in about three days. More recently, <a href="/today/2022/11/16/nasas-orion-spacecraft-now-finally-heading-moon-what-comes-next" rel="nofollow">NASA’s Artemis 1 mission</a>, which launched in 2022 with no humans aboard, made a more circuitous pass. The mission’s Orion space capsule first circled the moon, using its gravity to slingshot roughly 40,000 miles past the moon. That trip took five days.</p><p>Turner explained that some small aerospace companies may not have employees versed in those kinds of gravitational intricacies. ASTROMECH does the math for them.</p><p>“The ways in which Dezell is leveraging AR in designing ASTROMECH has the potential to make cislunar trajectory design much more understandable for most people in the industry,” said McMahon, associate professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences. “This could be hugely beneficial for training new employees and increasing small companies' ability to operate spacecraft in cislunar space.”</p><h2>Alternate routes available</h2><p>Back in the aerospace lobby, Turner demonstrates how he can pinch and swipe to compare those different routes.</p><p>Currently, the tool only tabulates fairly simple trajectories, similar to the direct path Apollo 11 took to the moon. But Turner would like to eventually add in more complicated routes. They include ones that take advantage of “Lagrange points,” or special spots in space where gravitational forces allow spacecraft to, essentially, park. The tool also includes an estimate for what aerospace engineers call delta-V, a calculation that roughly captures how much fuel a spacecraft will need to burn making maneuvers. Do you want to get to the moon fast and spend a bit more money or take your time and save on fuel?</p><p>Turner has a lot more work to do before aerospace companies can begin using ASTROMECH. One day, he envisions laying out trajectories for undertaking journeys even deeper into the solar system.</p><p>For now, he’s happy to have space at his fingerprints—just like Rey gazing at R2D2’s map.</p><p>“Getting to wear the headset really makes my day, especially when I’ve been fighting bugs in my code,” Turner said. “Getting to play with holograms makes me feel like a little kid.”</p></div></div></div></div></div></div></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/12/03/google-maps-space-one-grad-student-making-it-happen`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 03 Dec 2024 23:25:47 +0000 Jeff Zehnder 5854 at /aerospace Engineers transform smartphones into instruments for studying space /aerospace/2024/11/15/engineers-transform-smartphones-instruments-studying-space <span>Engineers transform smartphones into instruments for studying space</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-11-15T11:19:53-07:00" title="Friday, November 15, 2024 - 11:19">Fri, 11/15/2024 - 11:19</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2024-11/7_jade_morton_with_a_phone_and_monitoring_station_jpg.jpg?h=226c458b&amp;itok=L6BROdjo" width="1200" height="800" alt="Jade Morton holding a cell phone."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/329" hreflang="en">Jade Morton News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>That ordinary smartphone in your pocket could be a powerful tool for investigating outer space.</p><p>In a new study, researchers at Google and Ҵýƽ have transformed millions of Android phones across the globe into a fleet of nimble scientific instruments—generating one of the most detailed maps to date of the uppermost layer of Earth’s atmosphere.</p><div class="feature-layout-callout feature-layout-callout-xlarge">&nbsp;</div><p>The group’s findings, <a href="https://www.nature.com/articles/s41586-024-08072-x" rel="nofollow">published Nov. 13 in the journal Nature</a>, might help to improve the accuracy of GPS technology worldwide several-fold. The research was led by Brian Williams of Google Research and included Jade Morton, professor in the <a href="/aerospace" rel="nofollow">Ann and H.J. Smead Department of Aerospace Engineering Sciences</a> at Ҵýƽ.</p><p>“These phones can literally fit in your palm,” Morton said. “But through crowdsourcing, we can use them to change the way we understand the space environment.”</p><p>She and her colleagues used the GPS sensors that come standard in every smartphone to collect data on how Earth’s atmosphere warped signals coming from satellites. In the process, they were able to view phenomena in the atmosphere, such as blobs high above the planet known as “plasma bubbles,” in never-before-seen detail.</p><p>The group released its data publicly so that anyone can watch how the atmosphere swirled and shifted over about eight months.“Collaboration is central to scientific progress and to our scientific research at Google,” said Lizzie Dorfman, product lead for Science AI in Google Research. “Dr. Morton’s expertise was essential to this research, and it has been an absolute pleasure working with her as a visiting researcher and collaborator.”</p><h2>Eye on the ionosphere</h2><p>The study puts new focus on the ionosphere, a wispy layer of the atmosphere that stretches more than 350 miles above Earth’s surface.</p><p>It’s a volatile arena: Here, rays from the sun constantly beat down on the atmosphere, splitting its molecules and atoms into a soupy mix of charged particles—what scientists call a plasma. It also never stays still.</p><div class="feature-layout-callout feature-layout-callout-large">&nbsp;</div><p>“At 2 o'clock in afternoon, there are a lot more charged particles in the ionosphere because the sun is at its strongest,” Morton said. “But at night, the sun is on the other side of the planet, so we have very few charged particles.”</p><p>That fluctuation can play havoc with GPS technology.</p><p>Morton explained that the technology works through a sort of stopwatch in space: Satellites thousands of miles from Earth first beam radio waves to the planet. Your phone then pinpoints your location by measuring how long it takes those signals to reach the ground.</p><p>Scientists try to account for how the ionosphere might shift that timing by mapping this region of space using radar dishes on the ground. Currently, however, they can only observe about 14% of the ionosphere at any one time. As a result, GPS devices may miss your exact location by anywhere from a few to several dozen feet.</p><p>“There are a lot of applications that require a lot of accuracy—for example, landing aircraft,” Morton said.</p><h2>Bubbling up</h2><p>In the current study, the researchers landed on an unusual idea: Rather than rely on expensive radar dishes, they could map the ionosphere using a suite of sensors that already existed in every country on Earth: Android phones.</p><p>The ionosphere maps are created using aggregated measurements of the radio signals between satellites and the receivers in some Android devices. <a href="https://research.google/blog/mapping-the-ionosphere-with-the-power-of-android/" rel="nofollow">Privacy protections</a> ensure these measurements do not identify any contributing individual devices. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p><p>In particular, the group used the phones to track in real time how the ionosphere stretches out radio waves coming from satellites.</p><p>The team reported that, on its own, this worldwide fleet could observe roughly 21% of the ionosphere—potentially doubling the accuracy of GPS devices worldwide.</p><p>“Millions of phones together can do a much better job of monitoring the atmosphere than our ground network,” Morton said.</p><p>The group’s maps also capture the ionosphere in brilliant detail.</p><p>In May 2024, for example, a powerful solar storm struck Earth just as the group’s cell phones were looking up. In the hours that followed, huge regions of atmosphere, or “plasma bubbles,” containing low concentrations of charged particles formed above parts of South America. Those bubbles then rose through the ionosphere like wax in a lava lamp.</p><p>Morton, for her part, says the study shows the untapped potential of the everyday technologies that many people take for granted.</p><p>“I have spent my lifetime building dedicated instruments to do scientific research,” Morton said. “But as technology advances in our society, we see all these sensors at our disposal that have a lot more power than we ever imagined.”</p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/11/13/engineers-transform-smartphones-instruments-studying-space`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 15 Nov 2024 18:19:53 +0000 Jeff Zehnder 5845 at /aerospace Schaub one of nine new CU Distinguished Professors /aerospace/2024/11/07/schaub-one-nine-new-cu-distinguished-professors <span>Schaub one of nine new CU Distinguished Professors</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-11-07T12:03:29-07:00" title="Thursday, November 7, 2024 - 12:03">Thu, 11/07/2024 - 12:03</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-thumbnail/aerospace_faculty_portraits_pc0049.jpg.jpg?h=4f1481c3&amp;itok=0GiuHm5T" width="1200" height="800" alt> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/221" hreflang="en">Hanspeter Schaub News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><strong>Hanspeter Schaub, Ph.D., </strong>Professor and Department Chair, Schaden Leadership Chair, Ann and H.J. Smead Aerospace Engineering, University of Colorado Boulder</p><div><div>&nbsp;</div><div>Hanspeter Schaub, Ph.D.</div></div><p>Schaub is a visionary leader in the field of astrodynamics and spacecraft control whose innovative research has advanced the theoretical and practical understanding of spacecraft operations. His pioneering contributions to spacecraft formation flying, proximity operations, autonomous spacecraft scheduling and charged astrodynamics have transformed how we model and manage spacecraft motion, particularly through his work in electrostatic charging. These advancements are reshaping space mission proximity and rendezvous concepts, enabling new capabilities in spacecraft control without physical contact.</p><p>Schaub’s research has been instrumental in high-profile space projects, including the development of key components for the UAE Hope mission to Mars and the creation of the widely used Basilisk simulation environment. His work also explores the integration of machine learning into spacecraft command and control, opening new avenues for the future of space operations. His leadership in these cutting-edge fields is reflected in his recognition as a Fellow of both the American Institute of Aeronautics and Astronautics (AIAA) and the American Astronautical Society (AAS), alongside prestigious awards like the AAS Dirk Brouwer Award and the AIAA Mechanics and Control of Flight Award. He won the University of Colorado Hazel Barnes prize for integrating his research into multiple graduate courses.</p><p>As an educator, Schaub has had a profound impact on aerospace engineering. His co-authored textbook is a cornerstone in universities worldwide, and his groundbreaking aerospace MOOC has brought advanced learning to tens of thousands of students. His commitment to education has been recognized with numerous awards, and his mentorship has guided the careers of dozens of Ph.D. students, fostering the next generation of leaders in the field. In his role as Department Chair and through his editorial leadership at the AIAA Journal of Spacecraft and Rockets, Schaub continues to shape the future of aerospace engineering research and education, leaving a lasting legacy in academia and industry.</p></div> </div> </div> </div> </div> <div>The high honor recognizes exceptional contributions in research, education and service. Schaub’s research has been instrumental in high-profile space projects, including the...</div> <script> window.location.href = `https://connections.cu.edu/spotlights/nine-faculty-members-join-ranks-cu-distinguished-professors`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 07 Nov 2024 19:03:29 +0000 Jeff Zehnder 5837 at /aerospace NSF spotlight on Ҵýƽ CubeSat project /aerospace/2024/10/25/nsf-spotlight-cu-boulder-cubesat-project <span>NSF spotlight on Ҵýƽ CubeSat project</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-10-25T13:08:57-06:00" title="Friday, October 25, 2024 - 13:08">Fri, 10/25/2024 - 13:08</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/article-image/swarm-ex_project_description_20190530_v3-52.png?h=eab6a245&amp;itok=eW4hS2ee" width="1200" height="800" alt="Renderings of the SWARM-EX satellite."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/187" hreflang="en">Scott Palo News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/callout/swarmex7.png?itok=Z4LYbM64" width="750" height="750" alt> </div> </div> <p>The National Science Foundation is highlighting the SWARM-EX CubeSats.</p><p>The three cube satellite project, formally titled Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX), is an initiative of six universities, led by the University of Colorado Boulder.</p><p>"The thermosphere and ionosphere system — the start of what we often think of as 'outer space' — is a highly variable and complex region of our atmosphere contributing to space weather," said Scott Palo, a professor in Smead Aerospace and principal investigator for SWARM-EX.</p><p class="lead"><a href="https://new.nsf.gov/news/surfing-atmospheric-waves-tiny-satellites" rel="nofollow">Read the full article at NSF...</a></p></div> </div> </div> </div> </div> <div>The National Science Foundation is highlighting the SWARM-EX CubeSats. The three cube satellite project, formally titled Space Weather Atmospheric Reconfigurable...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 25 Oct 2024 19:08:57 +0000 Jeff Zehnder 5822 at /aerospace Air Force Research Lab Co-Learning Team Visits Smead Aerospace /aerospace/2024/10/25/air-force-research-lab-co-learning-team-visits-smead-aerospace <span>Air Force Research Lab Co-Learning Team Visits Smead Aerospace</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-10-25T11:48:16-06:00" title="Friday, October 25, 2024 - 11:48">Fri, 10/25/2024 - 11:48</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/2024-10/image4.jpg?h=52d3fcb6&amp;itok=6kPwLZHO" width="1200" height="800" alt="Members of the team in the human centrifuge lab."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/229" hreflang="en">Marcus Holzinger News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="ucb-box ucb-box-title-hidden ucb-box-alignment-right ucb-box-style-fill ucb-box-theme-white"><div class="ucb-box-inner"><div class="ucb-box-title">&nbsp;</div><div class="ucb-box-content"> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/2024-10/image1.jpg?itok=OBxBvnxV" width="1500" height="1125" alt="Inspecting a RAAVEN drone."> </div> <p class="small-text">Inspecting a RAAVEN drone.</p> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/aerospace/sites/default/files/styles/large_image_style/public/2024-10/image4.jpg?itok=utmZd1QZ" width="1500" height="1125" alt="Members of the team in the human centrifuge lab."> </div> <p class="small-text">Members of the team in the human centrifuge lab.</p></div></div></div><p>Personnel from the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate (RH) at Wright-Patterson Airforce Base, Dayton, Ohio visited Smead Aerospace Engineering Sciences October 7, 2024.&nbsp;</p><p>AFRL members met with faculty, researchers, and students pursuing human factors and space research in the department.&nbsp;</p><p>The Co-Learning team, led by Dr. Lorraine Borghetti, is pursuing novel methods for developing effective human-machine teaming systems in space domain awareness (SDA). The interdisciplinary team consists of experts from a wide range of backgrounds, including cognitive engineering, psychology, computer science, and data analysts.&nbsp;</p><p>The visit day was hosted by Prof. <a href="/aerospace/marcus-holzinger" data-entity-type="node" data-entity-uuid="af7471b2-7853-4c15-b4fa-2963c1099264" data-entity-substitution="canonical" rel="nofollow" title="Marcus Holzinger">Marcus Holzinger’s</a> Vision, Autonomy, and Decision Research (VADeR) Lab. Researchers in the VADeR Lab are developing a comprehensive SDA virtual reality (VR) wargaming environment to train Space Force cadets to operate spacecraft in cislunar space – the area between the Earth and Moon.&nbsp;</p><p>The partnership also includes subject matter experts from the CU Center for National Security Initiatives (NSI) and Air Force Office of Scientific Research (AFOSR). AFRL/RH and the VADeR Lab have plans to conduct joint human subject experiments related to space wargaming on campus.</p><p>The AFRL RH team and the VADeR lab also discussed space workforce development. Dr. Marcus Holzinger serves as the Principal Investigator on the <a href="/aerospace/2023/10/03/cu-boulder-leading-5-million-multi-university-project-advance-space-economy" rel="nofollow">STARLIT award</a>; STARLIT focuses on advancing SDA research and expanding the space talent pipeline. The discussion encompassed student recruitment strategies for AFRL internships, as well as information dissemination on AFRL’s postdoctoral opportunities through the National Academy of Sciences.</p><p>For more information on the AFRL Human Effectiveness Directorate, <a href="https://www.afrl.af.mil/711HPW/RH/" rel="nofollow">please visit their website.</a></p><p>For more information on Dr. Marcus Holzinger and the VADeR Lab, <a href="/faculty/holzinger/" rel="nofollow">please visit their website.</a></p><p><em><span>Contributing authors: Casey R. Heidrich, Meaghan Allyn</span></em></p></div> </div> </div> </div> </div> <div>Personnel from the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate (RH) at Wright-Patterson Airforce Base, Dayton, Ohio visited Smead Aerospace...</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 25 Oct 2024 17:48:16 +0000 Jeff Zehnder 5821 at /aerospace NASA Spotlight on Ҵýƽ CubeSat Van Allen Belt research /aerospace/2024/09/17/nasa-spotlight-cu-boulder-cubesat-van-allen-belt-research <span>NASA Spotlight on Ҵýƽ CubeSat Van Allen Belt research</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-09-17T12:59:33-06:00" title="Tuesday, September 17, 2024 - 12:59">Tue, 09/17/2024 - 12:59</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/aerospace/sites/default/files/styles/focal_image_wide/public/callout/cirbe_0.png?h=fe03d23e&amp;itok=EeZoFpFP" width="1200" height="800" alt> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/aerospace/taxonomy/term/152"> Colorado Center for Astrodynamics Research (CCAR) </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/aerospace/taxonomy/term/187" hreflang="en">Scott Palo News</a> <a href="/aerospace/taxonomy/term/189" hreflang="en">Xinlin Li News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/aerospace/sites/default/files/styles/medium_750px_50_display_size_/public/callout/img_7985.jpg?itok=4eTVH2E8" width="750" height="563" alt="CIRBE"> </div> </div> <p>An instrument aboard the CIRBE CubeSat is using advanced detection techniques and leveraging an orbit with specific characteristics to increase our understanding of the Van Allen belts</p><p>Designed and built by Smead Aerospace and the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, CIRBE launched in 2023 and is conducting sophisticated, fine-grain measurements of the Van Allen radiation belts. CIRBE is managed by Professors <a href="/aerospace/xinlin-li" data-entity-type="node" data-entity-uuid="a49b2ac4-3de2-4147-8f53-2de3a72b7855" data-entity-substitution="canonical" rel="nofollow" title="Xinlin Li">Xinlin Li</a> and <a href="/aerospace/scott-palo" data-entity-type="node" data-entity-uuid="1db428f6-4f74-4e10-9481-dd0e1aacdb3b" data-entity-substitution="canonical" rel="nofollow" title="Scott Palo">Scott Palo.</a></p><p>NASA is highlighting the research in a new article on an intense magnetic storm in May 2024.</p><p class="lead"><a href="https://science.nasa.gov/science-research/science-enabling-technology/innovative-instrument-reveals-hidden-features-deep-inside-the-van-allen-radiation-belts/" rel="nofollow">Read the full article at NASA.gov...</a></p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 17 Sep 2024 18:59:33 +0000 Jeff Zehnder 5797 at /aerospace